207 research outputs found

    Review of Reactor Neutrino Oscillation Experiments

    Full text link
    In this document we will review the current status of reactor neutrino oscillation experiments and present their physics potentials for measuring the θ13\theta_{13} neutrino mixing angle. The neutrino mixing angle θ13\theta_{13} is currently a high-priority topic in the field of neutrino physics. There are currently three different reactor neutrino experiments, \textsc{Double Chooz}, \textsc{Daya Bay} and \textsc{Reno} and a few accelerator neutrino experiments searching for neutrino oscillations induced by this angle. A description of the reactor experiments searching for a non-zero value of θ13\theta_{13} is given, along with a discussion of the sensitivities that these experiments can reach in the near future.Comment: 15 pages, 4 figure

    Last CPT-Invariant Hope for LSND Neutrino Oscillations

    Get PDF
    It is shown that the 99% confidence limits from the analyses of the data of cosmological and neutrino experiments imply a small marginally allowed region in the space of the neutrino oscillation parameters of 3+1 four-neutrino mixing schemes. This region can be confirmed or falsified by experiments in the near future.Comment: 6 pages, added predictions for neutrinoless double beta decay and tritium experiment

    Neutrino Phenomenology in a 3+1+1 Framework

    Get PDF
    Evidence continues to grow in the MiniBooNE (MB) antineutrino mode supporting a low-energy excess compatible with the MB neutrino mode and possibly also confirming the results of the LSND experiment. At least one sterile neutrino is required to explain the anomalies consistent with the observations of other experiments. At the same time, there is a strong tension between the positive signals of LSND and MB and the null results of nu_e and nu_mu disappearance experiments. We explore a scenario, first proposed in \cite{Nelson:2010hz}, where the presence of an additional heavy sterile neutrino (with mass well above an eV) can alleviate tension between LSND, MB and the null results of disappearance experiments. We compare and contrast this 3+1+1 scenario with the more standard 3+1 scenario and carry out global fits to all oscillation data including new 2011 MB anti-nu data. We find that the tension can be somewhat alleviated and that a phenomenologically viable window for the heavy neutrino, consistent with rare decays and BBN constraints, can be found if the fifth neutrino has a mass of order 0.3 - 10 GeV. We also find, however, that the 2011 MB anti-nu data exacerbates the tension with null experiments in both the 3+1 and 3+1+1 models when the lowest energy bins are included, resulting in little improvement in the global fit. We also discuss the implications of an additional neutrino for the reactor and gallium anomalies, and show that an oscillation explanation of the anomalies is disfavored by cosmological considerations, direct searches, and precision electroweak tests.Comment: 22 pages, 5 figures; replaced to reflect journal versio

    Local demands on sterile neutrinos

    Full text link
    In a model independent manner, we explore the local implications of a single neutrino oscillation measurement which cannot be reconciled within a three-neutrino theory. We examine this inconsistency for a single region of baseline to neutrino energy L/EL/E. Assuming that sterile neutrinos account for the anomaly, we find that the {\it local} demands of this datum can require the addition to the theory of one to three sterile neutrinos. We examine the constraints which can be used to determine when more than one neutrino would be required. The results apply only to a given region of L/EL/E. The question of the adequacy of the sterile neutrinos to satisfy a global analysis is not addressed here. Finally, using the results of a 3+2 analysis, we indicate values for unknown mixing matrix elements which would require two sterile neutrinos due to local demands only.Comment: 11 pages, 1 figure, discussion adde

    Confronting mass-varying neutrinos with MiniBooNE

    Full text link
    We study the proposal that mass-varying neutrinos could provide an explanation for the LSND signal for \bar\nu_mu to \bar\nu_e oscillations. We first point out that all positive oscillation signals occur in matter and that three active mass-varying neutrinos are insufficient to describe all existing neutrino data including LSND. We then examine the possibility that a model with four mass-varying neutrinos (three active and one sterile) can explain the LSND effect and remain consistent with all other neutrino data. We find that such models with a 3+1 mass structure in the neutrino sector may explain the LSND data and a null MiniBooNE result for 0.10 < \sin^2 2\theta_x < 0.30. Predictions of the model include a null result at Double-CHOOZ, but positive signals for underground reactor experiments and for \nu_\mu to \nu_e oscillations in long-baseline experiments.Comment: 22 pages, 3 figures, 1 table. Comment added about recent MINOS dat

    Sterile neutrinos: direct mixing effects versus induced mass matrix of active neutrinos

    Full text link
    Mixing of active neutrinos with sterile ones generate ``induced'' contributions to the mass matrix of active neutrinos mSsin2θaS\sim m_S \sin^2\theta_{aS}, where mSm_S is the Majorana mass of the sterile neutrino and θaS\theta_{aS} is the active-sterile mixing angle. We study possible effects of the induced matrix which can modify substantially the implications of neutrino oscillation results. We have identified the regions of mSm_S and sin2θaS\sin^2\theta_{aS} where the induced matrix (i) provides the dominant structures, (ii) gives the sub-dominant effects and (iii) where its effects can be neglected. The induced matrix can be responsible for peculiar properties of the lepton mixing and neutrino mass spectrum, in particular, it can generate the tri-bimaximal mixing. We update and discuss bounds on the induced masses from laboratory measurements, astrophysics and cosmology. We find that substantial impact of the induced matrix is possible if mS0.11m_S \sim 0.1-1 eV and sin2θaS103102\sin^2\theta_{aS} \sim 10^{-3} - 10^{-2} or mS200m_S \geq 200 MeV and sin2θaS109\sin^2\theta_{aS} \leq 10^{-9}. The bounds can be relaxed in cosmological scenarios with low reheating temperature, if sterile neutrinos decay sufficiently fast, or their masses change with time.Comment: Figures updated, version to be published in Phys. Rev.

    SEARCH FOR NEUTRINO OSCILLATION AT BUGEY

    Get PDF
    The high flux of low energy [MATH]e produced by the core of a PWR reactor of Bugey power plant has been used to search for evidence of neutrino oscillations through the inverse beta decay reaction [MATH]e + p → e+ + n. Measurements have been performed at two distances (13.5 and 18.5m). About 50 000 [MATH]e events have been collected at the first position and 25 000 [MATH]e events at the second one. Data analysis is almost completed

    Leptonic CP violation studies at MiniBooNE in the (3+2) sterile neutrino oscillation hypothesis

    Get PDF
    We investigate the extent to which leptonic CP-violation in (3+2) sterile neutrino models leads to different oscillation probabilities for νˉμνˉe\bar{\nu}_{\mu}\to\bar{\nu}_e and νμνe\nu_{\mu}\to\nu_e oscillations at MiniBooNE. We are using a combined analysis of short-baseline (SBL) oscillation results, including the LSND and null SBL results, to which we impose additional constraints from atmospheric oscillation data. We obtain the favored regions in MiniBooNE oscillation probability space for both (3+2) CP-conserving and (3+2) CP-violating models. We further investigate the allowed CP-violation phase values and the MiniBooNE reach for such a CP violation measurement. The analysis shows that the oscillation probabilities in MiniBooNE neutrino and antineutrino running modes can differ significantly, with the latter possibly being as much as three times larger than the first. In addition, we also show that all possible values of the single CP-violation phase measurable at short baselines in (3+2) models are allowed within 99% CL by existing data.Comment: Fixed a typo following PRD Erratum. 8 pages, 5 figure

    Neutrino-induced deuteron disintegration experiment

    Get PDF
    Cross sections for the disintegration of the deuteron via neutral-current (NCD) and charged-current (CCD) interactions with reactor antineutrinos are measured to be 6.08 +/- 0.77 x 10^(-45) cm-sq and 9.83 +/- 2.04 x 10^(-45) cm-sq per neutrino, respectively, in excellent agreement with current calculations. Since the experimental NCD value depends upon the CCD value, if we use the theoretical value for the CCD reaction, we obtain the improved value of 5.98 +/- 0.54 x 10^(-45) for the NCD cross section. The neutral-current reaction allows a unique measurement of the isovector-axial vector coupling constant in the hadronic weak interaction (beta). In the standard model, this constant is predicted to be exactly 1, independent of the Weinberg angle. We measure a value of beta^2 = 1.01 +/- 0.16. Using the above improved value for the NCD cross section, beta^2 becomes 0.99 +/- 0.10.Comment: 22pages, 9 figure

    A combined analysis of short-baseline neutrino experiments in the (3+1) and (3+2) sterile neutrino oscillation hypotheses

    Full text link
    We investigate adding two sterile neutrinos to resolve the apparent tension existing between short-baseline neutrino oscillation results and CPT-conserving, four-neutrino oscillation models. For both (3+1) and (3+2) models, the level of statistical compatibility between the combined dataset from the null short-baseline experiments Bugey, CHOOZ, CCFR84, CDHS, KARMEN, and NOMAD, on the one hand; and the LSND dataset, on the other, is computed. A combined analysis of all seven short-baseline experiments, including LSND, is also performed, to obtain the favored regions in neutrino mass and mixing parameter space for both models. Finally, four statistical tests to compare the (3+1) and the (3+2) hypotheses are discussed. All tests show that (3+2) models fit the existing short-baseline data significantly better than (3+1) models.Comment: 16 pages, 15 figures. Added NOMAD data to the analysis, one statistical test, and two figures. References and text added. Version submitted to PR
    corecore